定义生成任务旨在自动在特定上下文中生成一个单词的定义。但是,由于缺乏针对不同复杂性的数据集,模型产生的定义往往会保持相同的复杂度。本文提出了为具有可控复杂性级别的单词生成定义的新任务。相应地,我们介绍了编译,一个数据集给出了有关中国定义的详细信息,并且每个定义都标有其复杂性级别。编译数据集包括74,303个单词和106,882个定义。据我们所知,它是中国定义生成任务的最大数据集。我们选择各种代表性生成方法作为此任务的基准和进行评估,这说明我们的数据集在协助模型生成不同的复杂性级别定义方面发挥了出色的作用。我们认为,编译数据集将使复杂性可控定义生成的进一步研究受益。
translated by 谷歌翻译
现代的高性能语义分割方法采用沉重的主链和扩张的卷积来提取相关特征。尽管使用上下文和语义信息提取功能对于分割任务至关重要,但它为实时应用程序带来了内存足迹和高计算成本。本文提出了一种新模型,以实现实时道路场景语义细分的准确性/速度之间的权衡。具体来说,我们提出了一个名为“比例吸引的条带引导特征金字塔网络”(s \ textsuperscript {2} -fpn)的轻巧模型。我们的网络由三个主要模块组成:注意金字塔融合(APF)模块,比例吸引条带注意模块(SSAM)和全局特征Upsample(GFU)模块。 APF采用了注意力机制来学习判别性多尺度特征,并有助于缩小不同级别之间的语义差距。 APF使用量表感知的关注来用垂直剥离操作编码全局上下文,并建模长期依赖性,这有助于将像素与类似的语义标签相关联。此外,APF还采用频道重新加权块(CRB)来强调频道功能。最后,S \ TextSuperScript {2} -fpn的解码器然后采用GFU,该GFU用于融合APF和编码器的功能。已经对两个具有挑战性的语义分割基准进行了广泛的实验,这表明我们的方法通过不同的模型设置实现了更好的准确性/速度权衡。提出的模型已在CityScapes Dataset上实现了76.2 \%miou/87.3fps,77.4 \%miou/67fps和77.8 \%miou/30.5fps,以及69.6 \%miou,71.0 miou,71.0 \%miou,和74.2 \%\%\%\%\%\%。 miou在Camvid数据集上。这项工作的代码将在\ url {https://github.com/mohamedac29/s2-fpn提供。
translated by 谷歌翻译
直接使用现有的文本生成数据集进行可控生成时,我们面临的问题是没有域知识,因此可以控制的方面受到限制。一个典型的示例是,当使用CNN/Daily Mail数据集用于可控文本摘要时,没有关于摘要句子的重点的指导信息。更有用的文本生成器应利用输入文本和控制信号来指导生成,只能在对域知识的深入了解中构建。在这个愿景的激励下,我们的论文介绍了一个名为Mred的新文本生成数据集。我们的新数据集由7,089个元评论组成,其所有45k元评论句子都用9个精心定义的类别之一手动注释,包括抽象,力量,决策等。我们介绍了对开始的实验结果摘要模型,并提出了使用我们的带注释数据的方法对结构控制生成的方法。通过探索各种设置并分析模型行为相对于控制信号,我们证明了我们提出的任务的挑战以及数据集MRD的值。同时,MRD还使我们能够更好地了解元评论域。
translated by 谷歌翻译
分散的多基金会计划一直是机器人技术研究的重要领域。该领域中有趣且有影响力的应用是在未结构化的道路环境中分散的车辆协调。例如,在十字路口中,在没有中央协调员的情况下,在相交路径的多个车辆上解除多种车辆是有用的。我们从常识中学到的是,要使车辆浏览这种未建筑的环境,驾驶员必须理解并符合附近驾驶员观察到的隐式“社会礼节”。为了研究这种隐式驾驶协议,我们收集了伯克利DeepDrive无人机数据集。该数据集包含1)一组航空视频记录未结构化驾驶,2)图像和注释的集合来训练车辆检测模型,3)一个用于说明典型用法的开发脚本套件。我们认为,该数据集是研究人类驱动因素和次要兴趣的分散多种计划的主要兴趣,用于遥感环境中的计算机视觉。
translated by 谷歌翻译
在大数据时代,机器学习(ML)已经渗透了各个领域。协作机器学习(CML)比大多数常规ML的优势在于分散节点或代理的共同努力,从而可以提高模型性能和泛化。由于ML模型的培训需要大量的高质量数据,因此有必要消除对数据隐私的担忧并确保高质量的数据。为了解决这个问题,我们注视着CML和智能合约的整合。基于区块链,智能合约可以自动执行数据保存和验证以及CML模型培训的连续性。在我们的仿真实验中,我们定义了智能合约上的激励机制,研究重要因素,例如数据集中的功能数量(num_words),培训数据的大小,数据持有人提交数据等的成本等。并得出结论这些因素如何影响模型的性能指标:训练有素的模型的准确性,模型之前和之后模型的精度之间的差距以及消耗不良代理平衡的时间。例如,NUM_WORDS的值的增加导致更高的模型准确性,并从我们对实验结果的观察结果中消除了恶意药物的负面影响。统计分析表明,借助智能合约,无效数据的影响有效地减少并保持模型鲁棒性。我们还讨论了现有研究的差距,并提出了可能的进一步工作的未来方向。
translated by 谷歌翻译
作为第一个会话级的中文数据集,Chase包含两个单独的部分,即从Scratch(Chase-C)手动构建的2,003个会话,以及从英语SPARC(Chase-T)翻译的3,456个会话。我们发现这两个部分是高度差异,并且作为培训和评估数据不兼容。在这项工作中,我们介绍了SESQL,这是中文的另一个大规模会话级文本到SQL数据集,由5,028个会话组成,所有课程都是从Scratch手动构建的。为了保证数据质量,我们采用迭代注释工作流程,以促进对先前的自然语言(NL)问题和SQL查询的紧张和及时审查。此外,通过完成所有与上下文有关的NL问题,我们获得了27,012个独立的问题/SQL对,允许SESQL用作单轮多DB文本到SQL解析的最大数据集。我们通过使用三个竞争性会话级解析器,并提供详细的分析,对SESQL进行基准测试级文本到SQL解析实验。
translated by 谷歌翻译
训练视觉和语言模型的更多数据总是更好吗?我们研究多模式任务中的知识可传递性。当前的机器学习趋势是假设通过从不同任务加入多个数据集,其整体绩效将有所改善。但是,我们表明,并非所有知识都会很好地转移或对相关任务产生积极影响,即使它们共享一个共同的目标也是如此。我们基于数百种分为4组的视觉和语言任务进行了数百个跨表现的分析。尽管同一组中的任务容易相互改进,但结果表明并非总是如此。其他因素(例如数据集大小或训练阶段)也对知识的转移程度也有很大的影响。
translated by 谷歌翻译
Graph neural networks (GNNs) have been increasingly deployed in various applications that involve learning on non-Euclidean data. However, recent studies show that GNNs are vulnerable to graph adversarial attacks. Although there are several defense methods to improve GNN robustness by eliminating adversarial components, they may also impair the underlying clean graph structure that contributes to GNN training. In addition, few of those defense models can scale to large graphs due to their high computational complexity and memory usage. In this paper, we propose GARNET, a scalable spectral method to boost the adversarial robustness of GNN models. GARNET first leverages weighted spectral embedding to construct a base graph, which is not only resistant to adversarial attacks but also contains critical (clean) graph structure for GNN training. Next, GARNET further refines the base graph by pruning additional uncritical edges based on probabilistic graphical model. GARNET has been evaluated on various datasets, including a large graph with millions of nodes. Our extensive experiment results show that GARNET achieves adversarial accuracy improvement and runtime speedup over state-of-the-art GNN (defense) models by up to 13.27% and 14.7x, respectively.
translated by 谷歌翻译
现在已经普遍研究了机器学习(ML),它已应用于现实生活的许多方面。然而,模型和数据问题仍然伴随着ML的发展。例如,传统ML型号的培训仅限于数据集的访问,这通常是专有的;发布的ML模型可能很快过时,无需更新新数据和持续培训;恶意数据贡献者可能上传错误标记的数据,导致不良培训结果;滥用私有数据和数据泄漏也退出。利用区块链,新兴和迅速发展的技术,可以有效地解决这些问题。在本文中,我们对协同ML和区块链的融合进行了调查。我们调查了这两种技术的不同组合方式及其应用领域。我们还讨论了当前研究及其未来方向的局限性。
translated by 谷歌翻译
图表神经网络(GNNS)在半监督学习场景中取得了显着的成功。图形神经网络中的消息传递机制有助于未标记的节点收集标记邻居的监督信号。在这项工作中,我们调查了一项广泛采用的半监督学习方法之一的一致性正则化的一致性,可以帮助提高图形神经网络的性能。我们重新审视图形神经网络的两种一致性正则化方法。一个是简单的一致性正则化(SCR),另一个是均值是均值 - 教师一致性正则化(MCR)。我们将一致性正则化方法与两个最先进的GNN结合起来并在OGBN-Products数据集上进行实验。通过一致性正常化,可以在具有和无外数据的OGBN-Products数据集中提高最先进的GNN的性能0.3%。
translated by 谷歌翻译